Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 11, 2026
-
Free, publicly-accessible full text available May 28, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available January 30, 2026
-
The advent of moiré platforms for engineered quantum matter has led to discoveries of integer and fractional quantum anomalous Hall effects, with predictions for correlation-driven topological states based on electron crystallization. Here, we report an array of trivial and topological insulators formed in a moiré lattice of rhomobohedral pentalayer graphene (R5G). At a doping of one electron per moiré unit cell ( ), we see a correlated insulator with a Chern number that can be tuned between and by an electric displacement field. This is accompanied by a series of additional Chern insulators with originating from fractional fillings of the moiré lattice— , , and —associated with the formation of moiré-driven topological electronic crystals. At the system exhibits an integer quantum anomalous Hall effect at zero magnetic field, but further develops hints of an incipient fractional Chern insulator in a modest field. Our results establish moiré R5G as a fertile platform for studying the competition and potential intertwining of integer and fractional Chern insulators. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
-
Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering. Spacetime SPP interference patterns recorded in terahertz (THz) frequency range provided unobstructed readouts of the group velocity and lifetime of polariton that can be directly mapped onto the electronic spectral weight and the relaxation rate. Our data uncovered prominent departures of the electron dynamics from the predictions of the conventional Fermi-liquid theory. The deviations are particularly strong when the densities of electrons and holes are approximately equal. The proposed spacetime imaging methodology can be broadly applied to probe the electrodynamics of quantum materials.more » « less
An official website of the United States government
